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Abstract

Anton and Yao (1989) show that in split-award procurement auctions bidders coordinate

their bids to sustain high buyer price. We relax their assumption that the buyer has full

information about the suppliers’ production costs and restore the coordination outcome.
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1 Introduction

Anton and Yao (1989), hereafter AY, established the surprising result that under complete infor-

mation about each other’s costs if two bidders were allowed to bid for a continuum of splits of a

given production requirement of a buyer, the bidders would coordinate their bids leading to a high

price for the buyer.1 Since for any split α ∈ (0, 1), with α fraction of production awarded to a

developer D and 1 − α fraction awarded to a second source S, either bidder can veto the split by

submitting a high own bid; the main discipline on the equilibrium price and the viability of an

interior split comes from the bidders’ sole-source bids. At an interior split a high overall price and

individual bidder profits are maintained using sole-source profits as thresholds and threat points.

One notable aspect of AY’s setup is the assumption that the buyer has full information about

the supplers’ costs. This assumption plays an important role when a tie in minimal total bids

occurs: among the tied splits the buyer should select one that involves the minimal production

cost. But with such knowledge there is no reason for the buyer to hold an auction. Instead, he can

make a take-it-or-leave-it joint offer of a price equal to the minimum total production cost which

the suppliers cannot refuse, thus avoiding the coordination outcome. Furthermore, in practice, it

is very unlikely for a buyer to be fully aware of the suppliers’ costs.

In this Note, we assume instead that the buyer has no information about the suppliers’ costs.

To accommodate this assumption, we use an intuitively plausible tie-breaking rule that works

independently of the buyer’s information. This tie-breaker first looks at all splits associated with

the minimum total bid, then picks the split that is closest to the equal-share split. If this process

results in two different splits equidistant from α = 1/2, then the tie-breaker can favor either bidder,

say bidder D, giving him the option to choose between the two splits and if he does not exercise his

option then bidder S selects her desired split. We re-establish the bid coordination outcome under

this weaker assumption.

2 Two bidders game

Two potential suppliers, D (developer) and S (second source), submit sealed bids for a continuum

of splits, α ∈ [0, 1], of a total production contract x. A pair of bids (PD(α), PS(α)) implies that

at split α, D produces α share for a payment of PD(α) while S produces 1 − α share for PS(α),

leading to a buyer price PD(α) + PS(α). The bid functions are not required to be smooth. Let

(CD(α), CS(α)) be the respective production costs of D and S at split α with CD(0) = CS(1) = 0.

As in AY, there are no additional restrictions on the cost functions, and the suppliers are assumed

to be fully informed about each other’s costs when they bid. Total production cost at split α is

B(α) = CD(α) + CS(α).

1There are significant follow-on works based on Anton and Yao (1989). See, for example, Alcalde and Dahm
(2013) and the references therein.
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The bidders’ profits are given by

Πi(α) = Pi(α) − Ci(α), i = D, S.

� The buyer’s selection of the production split. For any pair of bids, the buyer chooses a split α to

minimize its procurement cost:

min
α∈[0,1]

G(α) := PD(α) + PS(α).

If the solution is unique, the buyer chooses this production split. If the minimization yields more

than one solution, a tie-breaking rule is needed to pick one split. AY assume that the buyer knows

the cost-minimizing split and chooses that split when a tie occurs. As mentioned earlier, if a buyer

has such information about the costs, there is no point in holding an auction – it can simply make

a take-it-or-leave-it offer, minimizing its procurement cost and avoiding the coordination problem.

We assume, instead, that the buyer has no information about the suppliers’s production costs.

To accommodate this new assumption, we propose the following tie-breaking rule:

First determine α value(s) closest to 1/2.

1. If this α value is unique, choose the corresponding production split.

2. If there are two α values equidistant from 1/2, let bidder D get the priority to declare his

preference ordering over these two splits.

If D declares a strict preference for one α over another, pick D’s preferred α as the final split.

If D expresses an indifference, then S gets to pick her preferred α from the two values which

then becomes the final split. If S is also indifferent then the buyer selects the higher of the

two α’s. ||

� Equilibrium analysis

Lemma 1 (AY, 1989) Let (P∗D, P
∗
S) be a Nash equilibrium and g∗ be the corresponding price to

the buyer. Then,

g∗ = P∗D(1) = P
∗
S(0).

Lemma 1 defines the ceiling on the equilibrium price through sole-source bids. We omit the

proof because it is the same as in AY.

Lemma 2 (Production Costs) Suppose an inefficient split, αin ∈ [0, 1], is supported in an equi-

librium (P∗D, P
∗
S). Then,

min{B(0), B(1)} ≥ B(αin). (1)

Proof. By Lemma 1,

g∗ = P∗D(1) = P
∗
S(0) = P

∗
D(α

in) + P∗S(α
in).
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Without loss of generality, suppose B(1) ≤ B(0). Suppose contrary to (1), CD(1) < CD(α
in) +

CS(α
in). Then

0 ≤ Π∗D(αin) ≤ g∗ − [CD(α
in) + CS(α

in)] < g∗ − CD(1),

where Π∗D(α
in) is D’s profit in the posited equilibrium involving αin-split. But then D can lower

his bid slightly below g∗ at the sole-source and realize a profit arbitrarily close to g∗ − CD(1)

that exceeds Π∗D(α
in), contradicting that αin-split is an equilibrium outcome. Hence, (1) must

hold. Q.E.D.

Lemma 2 implies that no strictly inefficient split can be supported in a Nash equilibrium if

sole-source production is cost efficient.

Proposition 1 (Equilibrium characterization) Bidding strategies (P∗D, P
∗
S) constitute a Nash

equilibrium resulting in an equilibrium split α∗ if and only if the following complete set of conditions

under [1]-[3] are satisfied:

1. Price ceiling condition:

g∗ = P∗D(1) = P
∗
S(0). (2)

2. No profitable deviation in bidding: Neither bidder finds it profitable to deviate unilaterally to

an alternative bidding strategy, i.e.,

Π∗i (α
∗) + B(α∗) ≤ Π∗i (α) + B(α) for all α ∈ [0, 1], i = D, S. (3)

3. Picking the winning split α∗ using the buyer’s selection rule and the tie-breaker, given submitted

bids (P∗D, P
∗
S):

(i) If |α− 1
2 | < |α∗ − 1

2 |, then

g∗ < P∗D(α) + P
∗
S(α); (4)

(ii) If |α∗ − 1
2 | < |α− 1

2 |, then

g∗ ≤ P∗D(α) + P∗S(α); (5)

(iii) If |α∗ − 1
2 | = |α− 1

2 |, then

– either (a):

g∗ < P∗D(α) + P
∗
S(α), (6)
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– or (b):

g∗ = P∗D(α) + P
∗
S(α), and (7)



Π∗D(α
∗) > Π∗D(α);

or Π∗D(α
∗) = Π∗D(α)

and Π∗S(α
∗) > Π∗S(α);

or Π∗D(α
∗) = Π∗D(α)

Π∗S(α
∗) = Π∗S(α)

and α∗ > α.

(8)

Proof. [Necessity] The necessity of item [1] follows from Lemma 1. The derivation of condition (3)

in item [2] is exactly the same as in AY.

To verify the necessity of item [3], first observe that α∗ being the winner, it must pick itself when

faced with all alternative values α 6= α∗. The conditions are exhaustively listed by partitioning the

range of production splits, [0, 1]. In the range under (i), if condition (4) fails for some α then the

tie-breaker would discard α∗ as the winner, so (4) must hold. For α in the range listed under (ii),

even if the overall bid price equals g∗ the tie-breaker will pick α∗, implying condition (5). For the

unique α under (iii), either the overall price must be higher than g∗ implying (6), or in the case of

a tie between α∗ and α the second tie-breaking provision is implemented implying conditions (7)

and (8).

[Sufficiency] The proof is straightforward and omitted. Q.E.D.

Proposition 2 (Sole-source outcome) (i) If B(0) < B(α) for all α ∈ (0, 1], the sole-source

contract awarded to the cost-efficient supplier S is the unique Nash equilibrium outcome with

bids {
g∗ = B(1) = P∗D(1) = P

∗
S(0),

P∗D(θ) > g
∗, P∗S(θ) > g

∗, for all θ ∈ (0, 1),
(9)

and yielding profits Π∗S = B(1) − B(0), and Π∗D = 0.

(ii) Let B(0) = B(1) and B(0) ≤ B(α) for all α ∈ (0, 1). Then sole-source contract awarded to

bidder S or D can be supported as an equilibrium outcome.

Proof. (i) Lemma 2 shows that no inefficient split α ∈ (0, 1] can be supported in an equilibrium

if sole-source production by S is cost-efficient. The sole-source equilibrium result involving bidder

S follows by applying Proposition 1. The only points that need clarifications are the bids at the

interior splits θ ∈ (0, 1) and the use of our tie-breaker. At all interior splits S and D individually

submit high enough bids, in excess of g∗, to make split production unattractive for the buyer. (If

their bids were to add up to g∗, the tie-breaker would rule out sole-source outcome.) The bid
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specifications satisfy the sufficient condition (3) characterized in Proposition 1 because:

Π∗S(0) + B(0) = B(1) − CS(0) + B(0) = B(1) < g∗ − CS(θ) + CD(θ) + CS(θ)

< P∗S(θ) − CS(θ) + CD(θ) + CS(θ)

= Π∗S(θ) + B(θ) for all θ ∈ (0, 1).

Given the ties g∗ = P∗D(1) = P∗S(0), the tie-breaker would first give an option to bidder D to

choose between α = 1 and α = 0. Since D earns zero profit for either choice, he, let’s say, declares

indifference and then S gets to choose her preferred outcome which is α = 0.

(ii) If there are multiple cost-efficient splits, including sole-source production by either supplier

and possibly some interior splits, the same strategies (9) will result in sole-source award to D or S

as an equilibrium outcome. The same proof as in part (i) applies except that now D is indifferent

between α = 1 and α = 0 and he can induce either outcome by expressing a strict preference for it

in the tie-breaker. Q.E.D.

In part (i) of Proposition 2 we deliberately chose S to be more cost-efficient than D in order

to illustrate the full application of our tie-breaking rule. The case that D is the most cost-efficient

supplier works in an analogous way. Part (ii) of Proposition 2 shows that either sole-source outcome

is possible when both arrangements are cost-efficient along with possibly other interior splits.

Proposition 3 (Split-award, multiple equilibria, efficient & inefficient outcomes) (i) Suppose

for any α ∈ (0, 1) the inequality (1) fails, i.e., min{B(1), B(0)} < B(α). Then the interior split,

α, cannot be supported in equilibrium.

(ii) Let B(1) ≤ B(0) and N = {α|B(α) ≤ B(1), 0 < α < 1} be the set of outcomes for which joint

production costs are less than sole-source production costs. Then, any α ∈ N can be supported

as an equilibrium outcome.

Proof. (i) This is implied by Lemma 2.

(ii) Below we construct bidding strategies (P∗D(θ), P
∗
S(θ)), θ ∈ [0, 1] to support any α ∈ N as an

equilibrium outcome.

For α to be an equilibrium split there must be some g∗ such that{
P∗D(1) = P

∗
S(0) = g

∗ = P∗D(α) + P
∗
S(α), (by Lemma 1)

Π∗D(α) ≥ Π∗D(1), Π∗S(α) ≥ Π∗S(0).
(10)

Let

P∗D(θ) = P
∗
S(θ) = g

∗ + ε, where ε > 0, for all θ ∈ (0, 1) \ {α}. (11)

Given conditions (10) and (11), the candidate splits for equilibrium are θ = 1, 0, α. With total bids

tied at θ = 1, 0, α, our tie-breaker will select uniquely θ = α.
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Now determine g∗ by setting2

g∗ − B(α) = g∗ − B(1) + g∗ − B(0),

i.e., g∗ = B(1) + B(0) − B(α) > 0. (12)

It remains to verify the profit (weak) inequality conditions in (10) and explicitly derive P∗D(α)

and P∗S(α). Let

Π∗D(α) = P
∗
D(α) − CD(α) = g∗ − B(1) = Π∗D(1), (verifies profit inequality condition for D)

so that P∗D(α) = g∗ − B(1) + CD(α), (13)

that, in turn, implies P∗S(α) = g∗ − P∗D(α)

= B(1) − CD(α). (using (10)) (14)

Verify the profit inequality condition for S as follows:

Π∗S(α) = P∗S(α) − CS(α)

= B(1) − CD(α) − CS(α)

= g∗ − B(0) = Π∗S(0).

This completes the equilibrium argument, by construction, for the split α ∈ N.

Finally, note that no other θ ∈ (0, 1) can be supported in equilibrium for the proposed strategies

(P∗D(θ), P
∗
S(θ)) defined by (10), (11), (13) and (14), establishing the equilibrium outcome α. Q.E.D.

Part (ii) of Proposition 3 admits a case common with part (ii) of Proposition 2: B(1) =

B(0) = B(α) for some 0 < α < 1. In such situations either sole-source or split-award can arise in

equilibrium.

Another central message of Proposition 3 is that when sole-source production does not strictly

lower costs relative to split production, potentially efficient and many inefficient split-award out-

comes can be supported in equilibrium. This multiplicity is due to both the extensive strategic

flexibility each bidder enjoys in vetoing any interior split as well as each bidder’s control over the

other bidder’s strategic maneuver through sole-source bids. However, as we will see next the bidders

are able to focus on a cost-efficient equilibrium that Pareto-dominates all inefficient equilibria.

Proposition 4 (Pareto-dominant efficient equilibrium) Any cost-efficient split αeff ∈ [0, 1]

strictly Pareto-dominates all equilibria involving inefficient splits from the bidders’ perspective. This

domination is achieved by a single pair of bidding strategies supporting αeff in a Nash equilibrium

with buyer price at its maximal value.

Proof. If αeff ∈ {0, 1}, no inefficient split can be supported as an equilibrium outcome (by Lemma 2).

Fix an efficient split αeff ∈ (0, 1) and choose the specific equilibrium constructed in the proof of

2It can be easily shown that B(1) + B(0) − B(α) is the maximal possible buyer price in any equilibrium involving
α-split.
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Proposition 3 to support αeff so that

geff = B(1) + B(0) − B(αeff). (15)

Consider any inefficient split αin. The maximal buyer price supporting αin is:

gmax = B(1) + B(0) − B(αin).

Take any equilibrium supporting αin, with buyer price no higher than gmax. In this equilibrium,

ΠD(α
in) ≥ gmax − B(1); ΠS(α

in) ≥ gmax − B(0). (16)

Also,

ΠD(α
in) + ΠS(α

in) ≤ gmax − B(αin). (17)

We claim

Π∗D(α
eff) > ΠD(α

in) (18)

and Π∗S(α
eff) > ΠS(α

in), (19)

which means strict Pareto domination.

Suppose, contrary to our claims, (18) is false3 so that

ΠD(α
in) ≥ ΠD(αeff) = geff − B(1). (20)

(The second equality above follows by construction of the efficient equilibrium in the same way

Π∗D(α) = g
∗ − B(1) in the proof of Proposition 3.)

Now we can write

gmax − B(0) ≤︸︷︷︸
(by (16))

ΠS(α
in) ≤︸︷︷︸

(by (17))

gmax − B(αin) − ΠD(α
in)

≤︸︷︷︸
(using (20))

gmax − B(αin) − geff + B(1)

i.e., −B(0) ≤ −B(αin) − geff + B(1)

i.e., B(0) + B(1) − B(αeff) − B(0) − B(1) ≤ −B(αin) (using (15))

i.e., B(αeff) ≥ B(αin),

which is a contradiction.

Hence (18) must hold. By a similar logic, (19) must also hold. This completes the proof. Q.E.D.

This Pareto-domination result is achieved by a single efficient equilibrium constructed explicitly

3We are not taking any position yet with regard to (19).
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that dominates over all inefficient equilibria. Proposition 4 summarises the central message of this

note: the bidders coordinate implicitly on a cost-efficient Pareto-dominating equilibrium. In this

equilibrium, the bidders’ joint profits and individual profits are maximal. But it leads to the highest

maximal procurement price for the buyer. The buyer does not need to know anything about the

suppliers’ costs for bid coordination to occur.

3 Remarks

When the buyer does not have any information regarding suppliers’ costs, we suggest the following

tie-breaker to deal with three bidders:

– If the minimum total bid from submitted bids result in ties of production shares α˜j = (αj,1, αj,2, αj,3)

where
∑3
i=1 αj,i = 1 and T is the set of ties containing α˜j, let α˜ = (α1, α2, α3) = arg minα˜j∈T

∑3
i=1 |αj,i−

1
3 |. If α˜ is unique, choose this split for the contract award.

– If there is more than one such α˜, give selection priorities in the following order, bidder 1 �
bidder 2 � bidder 3, with indifference expressed by the previous bidder passing the option of

choice onto the next bidder. If all three bidders express indifference, implement the allocation

with the highest αj,1, and if all αj,1 are equal then choose one with the highest αj,2 ; this last

step would determine αj,3 uniquely given that production shares must add up to 1. ||
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